Zero-sum games with charges
نویسندگان
چکیده
We consider two-player zero-sum games with countably infinite action spaces and bounded payoff functions. The players’ strategies are finitely additive probability measures, called charges. Since a strategy profile does not always induce a unique expected payoff, we distinguish two extreme attitudes of players. A player is viewed as pessimistic if he always evaluates the range of possible expected payoffs by the worst one, and a player is viewed as optimistic if he always evaluates it by the best one. This approach results in a definition of a pessimistic and an optimistic value for each player. We provide an extensive analysis of the relation between these values, and connect them to the classical values. In addition, we also examine existence of optimal strategies with respect to these values. JEL Codes. C72.
منابع مشابه
A TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملStrategic Decompositions of Normal Form Games: Zero-sum Games and Potential Games
We study new classes of games, called zero-sum equivalent games and zero-sum equivalent potential games, and prove decomposition theorems involving these classes of games. We say that two games are “strategically equivalent” if, for every player, the payoff differences between two strategies (holding other players’ strategies fixed) are identical. A zero-sum equivalent game is a game that is st...
متن کاملSimple Characterizations of Potential Games and Zero-sum Games
We provide several tests to determine whether a game is a potential game or whether it is a zero-sum equivalent game—a game which is strategically equivalent to a zero-sum game in the same way that a potential game is strategically equivalent to a common interest game. We present a unified framework applicable for both potential and zero-sum equivalent games by deriving a simple but useful char...
متن کاملOn minmax theorems for multiplayer games Citation
We prove a generalization of von Neumann’s minmax theorem to the class of separable multiplayer zerosum games, introduced in [Bregman and Fokin 1998]. These games are polymatrix—that is, graphical games in which every edge is a two-player game between its endpoints—in which every outcome has zero total sum of players’ payoffs. Our generalization of the minmax theorem implies convexity of equili...
متن کاملZero-Sum Repeated Games: Recent Advances and New Links with Differential Games
The purpose of this survey is to describe some recent advances in zero-sum repeated games and in particular new connections to differential games. Topics include: approachability, asymptotic analysis: recursive formula and operator approach, dual game and incomplete information, uniform approach.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Games and Economic Behavior
دوره 102 شماره
صفحات -
تاریخ انتشار 2017